
Investigating Error Resolution Processes
in C Programming Exercise Courses

Yuta Taniguchi
Faculty of Information Science

and Electrical Engineering
Kyushu University
Fukuoka, Japan

taniguchi@ait.kyushu-
u.ac.jp

Atsushi Shimada
Faculty of Information Science

and Electrical Engineering
Kyushu University
Fukuoka, Japan

atsushi@ait.kyushu-
u.ac.jp

Shin’ichi Konomi
Faculty of Arts and Science

Kyushu University
Fukuoka, Japan

konomi@artsci.kyushu-
u.ac.jp

ABSTRACT
This study investigates how we can understand students’ ac-
tual status in C programming exercises from their learning
activity logs. In a face-to-face course of C programming ex-
ercise, it is hard for a teacher to see who are in trouble from
their apperance. It is not always true that typing some-
thing means he or she is making some progress. Therefore
it is important to identify, or possibly even predict, students
having difficulty from their activity patterns. Most of the
prior work paid attention to only trial-and-error activities,
such as compile results and execution errors. However, it
tends to be overlooked that knowledge acquisition process
is also worthy of attention. When a student encounters a
compile error, they usually read textbooks to seek a solu-
tion. It is considered to be useful for the task whether he or
she has an ability to find appropriate pages for error resolu-
tion. In this paper, we propose a method to predict whether
a student can resolve errors or not. Based on students’ ac-
tivity logs collected from our programming environment and
e-book system, we conduct experiments to show and discuss
the prediction performance.

1. INTRODUCTION
The C programming language has many obstacles, such as
relatively complex syntax and confusing messages of compile
errors. In C programming courses, students are required to
overcome those hurdles as well as to learn how to solve prob-
lems computationally. Especially, because error messages
are not necessarily straightforward, students are sometimes
led to irrelevant pages of textbooks and get confused. Such
learning experiences perhaps lower their motivation to learn,
and therefore teachers need to intervene to help students in
such situations. However, not all students ask their teachers
or friends when they have a tough issue, and it is hard for
teachers to distinguish students in trouble from ones with-
out problems by physical appearance. Hence data-driven

approaches have been considered for identifying such at-risk
students.

Blikstein [1] and Helminen et al. [4] performed a kind of
offline analysis of students’ behaviors. On the other hand,
a realtime-oriented analysis was performed by Fu et al. [3].
They proposed a dashboard system for teachers to grasp the
current status of all students in real-time fashion. However,
none of them considered the knowledge acquisition process.
Helminen et al. [4] addressed the process where students
struggle to resolve errors. However, in their study, only lim-
ited activities, e.g. selecting, ordering, and indenting code
fragments, are analyzed, and activities such as referring ex-
ternal learning materials are not considered.

For understanding students’ learning processes, it is signif-
icant to know how students search learning resources for
necessary information and acquire knowledges. We believe
students have to learn how to resolve errors by themselves,
and intervention by teachers should be controlled. Hence
we have to care how much effort was made by a student to
obtain necessary knowledges for resolving errors. Although
we could quantize such efforts to some extent by observing
how they use their textbooks during programming exercises,
only a limited number of studies focused on students’ trial-
and-error and knowledge acquisition in learning processes of
programming languages.

Toward automatic and real-time detection of students in
need of help, in this paper, we analyze error resolution pro-
cesses in which students struggle to resolve compilation er-
rors with course materials in a programming exercise course.
Furthermore, we try to predict whether they can successfully
resolve errors or not in early stage of error resolution pro-
cesses. Toward this end, we employ both compilation logs
and page view logs of e-textbooks, and characterize compi-
lation errors in relation to exercise questions and individual
students.

2. METHODS
2.1 Error Resolution Processes
The C Programming Language belongs to the compiled lan-
guagegs, which need a compile process ahead of executing a
program. In the compile process, a compiler program trans-
form input source code into a machine code. The process
involves a lot of checks and many problems are found as er-



f sr r f r r r time

compile event
failed

compile event
succeedede-book page

reading event

1 1 2

problem identifier

Figure 1: An example of a timeline. A timeline
may consist of three types of events: failure com-
pile event, success compile event, and e-book page
reading event.

r r r r

Another error resolution process

timer r r

An error resolution process

f1 f1 s1 s1 s1 f1 f1 s1f1

Figure 2: An example of an error resolution process
found in a timeline. Every ERP starts with a failure
compile event, but does not necessarily end with a
success compile event.

rors before running a program. Errors found in this step
could be typically divided into syntax errors and linker er-
rors. The former type of errors requires a student to modify
their source code so that it follows the syntax of C lan-
guage. In the latter case, it usually occurs because of miss-
ing libraries and one need to specify required libraries on the
command line (or a compiler’s configurations). In this study,
we call such a process as an error resolution process (ERP),
and analyze how students resolve such errors by themselves
during exercises.

A sequence of a student’s activities is called a timeline. A
timeline consists of events, and we consider three kinds of
events in this study: failure compile event, success compile
event, and e-book reading event. The first two types occur
when a student compiles his or her source code. If a compile
finishes without printing any messages on a screen, we con-
sider it is a success compile event. On the other hand, it is
considered as a failure compile event if a compiler outputs
some messages. An e-book reading event indicates a student
started to read a page of an e-book.

These concepts are illustrated in Figure 1. The figure shows
a sequence of eight events from left to right. Every complie
events are associated with a problem that a student try to
solve. Identifiers of problems are shown at the top right of
each event. For this example, one of the possible interpreta-
tions of the timeline is as follows; a student were working on
the problem 1 and compiled their program for it; however,
they got an error from the compiler, and then they rewrite
a program according to textbooks and tried again; unfortu-
nately, it did not work well, and he or she abandoned the
problem and began the problem 2; they compiled another
program, and it successfully finished.

We more precisely describe an ERP based on a timeline. An
ERP is a contiguous subsequence of a timeline; an ERP al-
ways starts with an failure compile event, and it can include
only compile events associated with the same exercise prob-
lem. For example, Figure 2 shows two ERPs within a time-
line. Since the timeline does not involve another problem in

(1) Resolved

f1 s1

(2) Abandoned
(a) Switched to another problem

f1 s2

f1 f2

(b) End of Class

f1 r

Figure 3: Possible cases of ERPs whose result could
be either resolved or abandoned.

this case, we can simply identify ERPs as longest contigu-
ous subsequences starting with a failure compile event and
containing at most a single success compile event at the end
of the subsequence. Another example is shown in Figure 1
which consists of all except the last event.

While several scenario could be considered for ERPs, we
simply consider two kinds of outcome from an ERP: resolved
and abandoned. Figure 3 shows examples for both cases. A
resolved ERP ends with a success compile event associated
with the same problem as the ERP’s initiating failure com-
pile event. An abandoned ERP could finish with either an
e-book event or a failure compile event. The latter type
of ERPs appears when a student switch a current exercise
problem to another or a class is over.

2.2 Predicting Outcomes from ERPs
It might be an important information for teachers whether a
student’s ERP will end up with resolved or abandoned state.
We consider the prediction of the outcome from an ERP in
early stage of the process. To characterize EPRs, we employ
n-gram features. Firstly, we obtain a textual representation
of an ERP. In the representation, every event is notated as
a single letter. In this paper, we use s for a success compile
event, f for a failure compile event, c for an event of reading
e-textbooks especially for the programming course, o for an
reading event but for other course materials. Furthermore,
we also encode gaps between events with - which denotes a
gap of just 10 seconds. Any gaps less than 10 seconds are
ignored. For example, a gap of 24 seconds is notated as --.

N-gram features are then extracted from the text representa-
tion of a timeline. As there are five letters in the representa-
tion, an n-gram feature vector will be a 5n-dimensional vec-
tor. For example, if we use 3-gram-based features, a student
is represented as a 125-dimensional vector. In this study, we
combine 1- to 4-gram feature vectors into a single feature
vector, i.e. 51 + 52 + 53 + 54 = 780-dimensional vector, and
use it for making prediction.

Students’ first actions are considered important; for exam-
ple, an expert will read error messages carefully, fix prob-
lems, and then recompile the program while a beginner will
just repeat the compile or read many pages of textbooks
seeking for a solution. We expect such differences are cap-
tured by n-gram representations of the first t minutes.

In our experiments, we targeted only ERPs longer than



0 10 20 30 40 50 60 70 80 90
Duration [min.]

0

20

40

60

Pe
rc

en
ta

ge
 [%

]

Figure 4: The distribution of durations of error res-
olution processes.

Table 1: Hyperparameters adjusted.
Hyperparameter Candidates
criterion gini, entropy
max depth 1, 2, 3, 4, 5, 6, 7, 8
max features sqrt, log2, None

2t minutes. If we use the first t minutes for predicting the
outcomes of ERPS whose durations are less than 2t min-
utes, it means that we use more than a half of information
to predict the final status of ERPs. That is why we exclude
ERPs shorter than 2t minutes in this study.

We set t = 5 in our experiments. There are 29,216 ERPs in
our dataset. Figure 4 shows the distribution of the durations
ERPs took. The number of ERPs which only took less than
or equal to 10 minutes was 25,886 (88.6%), and the number
of our target ERPs was 3,330 (11.4%).

For the prediction, we employ random forest classifiers as a
classifier. Random forests are one of the ensemble learning
algorithm based on bagging technique and random selection
of features [2]. This is one of the most popular classifiers
not only in educational datamining community but also in
wider data science community. It is known that the classifier
is robust even when each dimension of feature vectors has
different scales. Therefore, we simply apply random forests
to n-gram feature vectors without normalizing them.

We use the implementation of random forest classifier in-
cluded in scikit-learn package [6] in this study. Basically,
we use the default values of the library for the classifier’s
hyperparameters except for ones shown in Table 1 and the
number of estimators which was set to 100. We optimize
these parameters by a grid search algorithm, whose imple-
mentation is also provided by scikit-learn. The candidate
values for these parameters are shown in the table.

2.3 Data Collection
The course we target is the introductory courses for C pro-
gramming language in our university. Primarily, all fresh-
men students takes the course. The class is composed of
lectures and coding exercises. There are about 20 classes for
the course for each year, and almost all of the courses are
taught by different teachers. Although it is not enforced, we

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC fold 0 (AUC = 0.57)
ROC fold 1 (AUC = 0.52)
ROC fold 2 (AUC = 0.60)
ROC fold 3 (AUC = 0.60)
ROC fold 4 (AUC = 0.55)
Chance
Mean ROC (AUC = 0.57 ± 0.03)
± 1 std. dev.

Figure 5: The ROC curve obtained from 5-fold cross
validation.

have a set of standard course materials, and they are used
in almost all classes.

In exercise, we use the compiler program “gcc”, from the
GNU compiler collection. The compiler program is modi-
fied from the original version so that it can record students’
learning logs. More precisely, when it is executed, it saves
given commandline arguments, the contents of given source
files, and the output of the compiler as well as the time
and student IDs. Since a commandline and source code are
available as logs, we can reproduce what a student tried and
what he or she obtained as a result. From those learning
logs, we reconstruct compile events in timelines.

We also utilize students’ learning logs on our own web-based
e-book system BookRoll [5]. All the course materials are
available on the system, and therefore we can collect stu-
dents’ learning logs about how student utilized those text-
books during exercises. Students’ actions, such as flipping
pages and adding highlights, on the system are collected im-
mediately as events occur. In this study, we only focus on
page-flipping events collected for our analysis.

3. RESULTS & DISCUSSION
We evaluated our prediction performance using AUC met-
ric, which stands for area under the ROC curve, combining
with 5-fold cross validation. The hyperparameter values ob-
tained by the grid search algorithm were criterion=gini,
max_depth=6, max_features=sqrt, n_estimators=10. Fig-
ure 5 shows the five ROC curves obtained during cross val-
idation and the mean ROC curve computed from them.

Table 2 shows the average performance scores with four eval-
uation metrics. According to the table, we cannot say the
perfromance is good. Althogh the recall value is relatively
high, precision value (especially in the test phase) is low.
AUC value for the test phase is better than the chance rate,
it is not good enough for practical use.



Table 2: Cross validation result. Values are aver-
aged over five folds.

Metric Value
AUC (test) 0.566
F1 (test) 0.698
Precision (test) 0.598
Recall (test) 0.844
AUC (train) 0.684
F1 (train) 0.740
Precision (train) 0.640
Recall (train) 0.882

4. CONCLUSION
Focusing on students’ error resolution processes, we pro-
posed a predction method for outcomes from those process.
We encode event sequences into texts, and characterize them
using n-gram features. From our preliminary analysis, the
proposed method could not show a good performance while
it has a little bit better performance than the chance rate.

Future work include improvement of the feature representa-
tion of timelines and further analysis on the characteristics
of student’s activities and abilities.

5. ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Num-
ber JP17K12804.

6. REFERENCES
[1] P. Blikstein. Using learning analytics to assess students’

behavior in open-ended programming tasks. In
Proceedings of the 1st International Conference on
Learning Analytics and Knowledge, pages 110–116.
ACM, 2011.

[2] L. Breiman. Random forests. Machine Learning,
45(1):5–32, Oct 2001.

[3] X. Fu, A. Shimada, H. Ogata, Y. Taniguchi, and
D. Suehiro. Real-time learning analytics for c
programming language courses. In Proceedings of the
Seventh International Conference on Learning
Analytics & Knowledge, LAK ’17, pages 280–288, New
York, NY, USA, 2017. ACM.

[4] J. Helminen, P. Ihantola, V. Karavirta, and L. Malmi.
How do students solve parsons programming problems?:
An analysis of interaction traces. In Proceedings of the
Ninth Annual International Conference on
International Computing Education Research, ICER
’12, pages 119–126, New York, NY, USA, 2012. ACM.

[5] H. Ogata, Y. Taniguchi, D. Suehiro, A. Shimada,
M. Oi, F. Okubo, M. Yamada, and K. Kojima. M2b
system: A digital learning platform for traditional
classrooms in university. Practitioner Track Proceedings
of the Seventh International Conference on Learning
Analytics & Knowledge, pages 155–162, 2017.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.


