Graph Clustering Based on Optimization of
a Macroscopic Structure of Clusters

Yuta Taniguchi and Daisuke Ikeda

Department of Informatics, Kyushu University
{yuta.taniguchi,daisuke}@inf.kyushu-u.ac.jp

Abstract. A graph is a flexible data structure for various data, such as
the Web, SNSs and molecular architectures. Not only the data expressed
naturally by a graph, it is also used for data which does not have explicit
graph structures by extracting implicit relationships hidden in data, e.g.
co-occurrence relationships of words in text and similarity relationships
of pixels of an image. By the extraction, we can make full use of many
sophisticated methods for graphs to solve a wide range of problems. In
analysis of graphs, the graph clustering problem is one of the most im-
portant problems, which is to divide all vertices of a given graph into
some groups called clusters. Existing algorithms for the problem typi-
cally assume that the number of intra-cluster edges is large while the
number of inter-cluster edges is absolutely small. Therefore these algo-
rithms fail to do clustering in case of noisy graphs, and the extraction of
implicit relationships tends to yield noisy ones because it is subject to a
definition of a relation among vertices. Instead of such an assumption,
we introduce a macroscopic structure (MS), which is a graph of clusters
and roughly describes a structure of a given graph. This paper presents
a graph clustering algorithm which, given a graph and the number of
clusters, tries to find a set of clusters such that the distance between
an MS induced from calculated clusters and the ideal MS for the given
number of clusters is minimized. In other words, it solves the clustering
problem as an optimization problem. For the m-clustering problem, the
ideal MS is defined as an m-vertex graph such that each vertex has only
a self-loop. To confirm the performance improvements exhaustively, we
conducted experiments with artificial graphs with different amounts of
noise. The results show that our method can handle very noisy graphs
correctly while existing algorithms completely failed to do clustering.
Furthermore, even for graphs with less noise, our algorithm treats them
well if the difference between edge densities of intra-cluster edges and
those of inter-cluster edges are sufficiently big. We also did experiments
on graphs transformed from vector data as a more practical case. From
the results we found that our algorithm, indeed, works much better on
noisy graphs than the existing ones.

Keywords: graph clustering, noisy graph, macroscopic structure, opti-
mization



1 Introduction

A graph is a flexible and expressive data structure composed of vertices and
edges, which describes relationships between entities in edge connectivity of ver-
tices. It is used in various fields to represent data such as the World Wide Web
made of Web pages and hyperlinks between them [2,3,11,12], social networks
expressing friendships of people [10, 15], co-authors’ relationships [14, 16], com-
puter communication networks [1], biological networks [9,17] and so on.

There exist many graphs which contain some groups of vertices. For instance,
a group of Web pages in the World Wide Web corresponds to a topic of the con-
tent and a group found in an electronic circuit may correspond to a functional
unit. The problem to identify such groups in a given graph is called graph clus-
tering problem, and many tasks are modeled as the problem as follows: social
network analysis [15], image segmentation [18], natural language processing [6],
circuit layout [7] etc.

Some of the tasks handle graphs which explicitly have graph structure, e.g.
social networks and molecular structures, but the other tasks, such as the image
segmentation task, handle artificial graphs extracted from an original data, such
as graphs representing pixels’ similarity relationships on images and those de-
scribing co-occurrence relationships of words in text. Therefore, it is important
for graph clustering algorithms to treat such graphs appropriately as well as
natural ones.

The graph clustering problem has been extensively studied and thus there
exist many algorithms for the problem. Although each paper defines its own
definition of the cluster, the most of them assume that intra-cluster edges are
dense while inter-cluster edges are absolutely sparse. For instance, assuming that
clusters are connected by only a few edges, GN algorithm proposed by Girvan
and Newman [10] uses “edge betweenness”, a centrality measure of an edge, to
identify edges between clusters.

This assumption makes these methods unusable especially on graphs trans-
formed from other data because the extraction of implicit relationships is subject
to a definition of a relation among vertices and tends to yield noisy ones which
don’t satisfy the assumption. So, to solve the tasks by exploiting such implicit
relationships, it is important to develop graph clustering algorithms which don’t
rely on the absolute sparseness of inter-cluster edges.

Instead of such an assumption, we introduce a macroscopic structure (MS),
which is a graph of clusters and roughly describes how a given graph is struc-
tured by the clusters (Fig. 1). In this example, an MS composed of four clusters
is induced from an original graph according to a given coloring. The coloring
describes correspondence relationships between vertices and clusters, and it is
called a “view”, we will describe precisely later.

This idea to utilize the MS for clustering is inspired by HITS algorithm [11],
a link analysis algorithm which identifies hubs and authorities within a set of
Web pages related to a particular search query. The paper explains that the hub
pages and the authoritative pages have a mutually reinforcing relationship “a
good hub is a page that points to many good authorities; a good authority is a



(a) Original graph (un- (b) Macroscopic structure
weighted graph) (weighted graph)

Fig. 1. A macroscopic structure (graph on the right hand side) induced from an original
graph (one on the left hand side) according to a given coloring (called a “view” later).
In the graph on the right hand side, the width of an edge denotes a weight assigned to
the edge.

page that is pointed to by many good hubs.” We think such relationships also
exist for each graph-related problems, and we call the relationships MSs.

This paper presents a graph clustering algorithm which, given a graph for
clustering and the number of clusters, tries to find a set of clusters such that the
distance between an MS induced from clusters calculated from the given graph
and the ideal MS for the given number of clusters is minimized. In other words,
it solves the clustering problem as an optimization problem. For the m-clustering
problem, the ideal MS is defined as an m-vertex graph such that each vertex has
only a self-loop.

We conducted experiments on artificial graphs with various amount of noise
to investigate how the accuracies of the clustering results of existing algorithms
and ours change. The results present that our algorithm is more accurate on
most of graphs we generated than the existing algorithms, and they failed to
do clustering especially on noisy graphs. We also did experiments on graphs
transformed from vector datasets for clustering as more practical cases, and our
algorithm outperforms the existing algorithms on noisy graphs.

The rest of this paper is structured as follows. Section 2 explains existing
methods for graph clustering problems and points out their drawback and in-
troduces HITS algorithm from which we are inspired. Section 3 describes our
algorithm in detail, and Section 4 shows results of experiments for comparing
our algorithm and the existing ones. Finally we conclude the paper in Section 5.

2 Related Work

First, we describe previous works of graph clustering problems and point out
their drawbacks which come from the same assumption. Then we make an in-
troduction of HITS algorithm, which we were influenced from.



2.1 Previous Work

There exist two types of graph clustering algorithms: hierarchical graph clus-
tering algorithms and non-hierarchical graph clustering ones. The former does
clustering by iteratively removing an edges or merging clusters, and create a
hierarchy of clusters. On the other hand, non-hierarchical graph clustering does
not rely on such graph operations but on some computation of quantities like
flow.

GN algorithm proposed by Girvan and Newman [10] is one of the most famous
method for graph clustering problems. This is a hierarchical clustering algorithm,
which constructs a hierarchy of clusters instead of a set of clusters. This algorithm
is based on “edge betweenness” measure that evaluates an edge in a given graph
with the number of shortest paths between pairs of vertices in the graph which
includes the edge. If a graph is composed of several clusters, because two clusters
must be connected by only few edges, most of shortest paths between different
clusters may include ones of such few edges. Iteratively evaluating edges and
removing the edge with the highest betweenness, the algorithm separates the
clusters and finally reveals their structure. The whole process of the algorithm
is as follows: 1) calculate the betweenness for each edges, 2) remove the edge
with the highest betweenness, 3) recalculate the betweenness for each remaining
edges, and 4) iterate 2 and 3.

Another well known algorithm for graph clustering problems is Markov Clus-
tering (MCL) algorithm proposed by Stijn van Dongen [5], which is a non-
hierarchical algorithm based on random walk on a graph. This algorithm itera-
tively applies the following three operations on a transition matrix M initially
calculated from the adjacency matrix of a given graph until the matrix con-
verges: expansion, inflation and prune in order. Let G = (V, E) be an input
graph, where V, E denote a vertex set and an edge set respectively. Let A be a
|[V| x |V] adjacency matrix of G, where A;; = 1 if and only if (v;,v;) € E and
A;j = 0 otherwise. Let M be a transition matrix, where its element is defined as
M;; = Aij/ Z‘kv:ll Ap;. In the expansion step the random walk is performed by
updating M by M = M x M. Inflation step is defined as M;; = M,/ Z‘kvzll My,
This step is executed for emphasizing the difference of higher probabilities and
lower ones in M. At the end of inflation step, prune step is performed, in which
an element of M with sufficiently small probability are removed to save memory
for storing M. After M converges, we interpret the computed M as clustering
by making clusters of vertices connected through transitions of M.

The most of the existing algorithms including the above focus on the dif-
ference between intra-cluster edge density and inter-cluster one. However, in
fact they additionally assume that edges between different clusters are abso-
lutely sparse. The assumption harms the accuracy of the algorithms on graphs
extracted from original data as an implicit relationships because the extraction
process tends to yield noisy graphs and such graphs don’t meet the assumption.
So, in this paper, we focus only on relative difference of densities between clusters
by exploiting a macroscopic structure of a given graph.



2.2 HITS as a Classification Method

Our main idea is to utilize a macroscopic structure for graph clustering prob-
lems. This idea is inspired by Kleinberg’s HITS algorithm [11], which identifies
authoritative Web pages by analyzing hyperlink graph.

To identify the authoritative pages within a set of Web pages obtained by
a query, Kleinberg assumed that hyperlink graph of the pages is structured by
two types of pages: authoritative pages called authority and pages of collection
of links called hub. According to the assumption, these pages have a mutually
reinforcing relationship, i.e. “a good hub is a page that points to many good
authorities, a good authority is a page that is pointed to by many good hubs,”
and HITS utilizes this structure of hyperlink graph for identifying authorities.
Seeing HITS algorithm as one to divide Web pages into two groups leads us to
the application of their idea to the graph clustering problems.

Though the idea of HITS is considered useful, we cannot apply the algorithm
directly to graph clustering because it is only for classifying into hubs and au-
thorities and the structure they assume doesn’t meet graph clustering. In the
next section, we propose appropriate structures for graph clustering problems
and reformulate their idea as a more general optimization problem.

3 Our Algorithm

3.1 The Problem

This paper treats a hard graph clustering problem, which allows each vertex of a
given graph to belong only a cluster. Our algorithm takes a directed graph G =
(V, E) and the number of clusters m as input, where V = {v;} ; and E C V' xV,
and outputs a set of non-empty disjoint clusters C = {C;}*_,, where C; € 2". In
fact, as we discuss later, our algorithm does soft clustering, which allows vertices
to belong several clusters probabilistically. This makes our optimization problem
easier.

3.2 Macroscopic Structures

First, we briefly explain our idea, and then we describe our algorithm in detail.
In our algorithm a macroscopic structure (MS) plays important role. Given a
graph and a wview, an MS is defined to be a graph of clusters and represents
coarse structure of the original graph through the view. A view is a matrix and
describes which cluster each vertex belongs, i.e. this is a clustering and what
we want to obtain. Our goal is to find the most appropriate view for a given
graph. Figure 2 shows an example cases of application of views to an original
graph. In the figure, the adjacency matrices of an original graph and calculated
MSs by using given views are drawn as bitmaps, and n,m are the number of
vertices in the original graph and clusters introduced by the views respectively.
Figure 2(b) shows a bad case where a randomly generated view is applied to the
graph, and we can see from the MS the structure of the original graph is not



n
20 5 5
4 4
10 m N m ®
2 2
A 1 !
10 20 30 w0 123845
) n : n m
(a) Original graph (un- (b) Inappropriate case (left: a view; right
weighted graph) an MS)

B S )

B A

12 3 45

10 20 30 40

n m
(c) More appropriate case (left: a view;
right an MS)

Fig. 2. Applications of views to an original graph. Graphs and views are expressed in
matrix and are drawn as bitmaps, where n is the number of vertices in the original
graph and m is the number of clusters introduced by the views. Here two cases are
shown: (b) shows an inappropriate case that a randomly generated view is applied; and
(c) shows an appropriate case that a more appropriate view is applied.

correctly captured. On the other hand, in Fig. 2(c), the structure of the graph
is more properly captured using a view.

Let G = (V, E) be a given graph, where V = {v1,v9,...,v,t and E C V x V.
Let B = [b;;] be an n X m view matrix, where m is the number of clusters,
bir € {0,1} and >, bjr, = 1 for all 1 < i < n. Using the view matrix, we obtain
an MS D(B), where D(B) = [d(B)] is an m x m matrix and its element is
computed as follows:

d(B) = > i1 g1 bikbjiai;  BTAB W
YL Y bk BT1B’
where 1 is an n x n matrix with all elements one and A = [a,;] is an adjacency
matrix of the graph G, i.e. a;; = 1if (4, j) € E and a;; = 0 otherwise.

The i-th row of a view matrix B corresponds to a vertex v; and represents
which cluster the vertex belongs to, i.e. b;p = 1 if and only if v; € Cj. Using the
relationships between vertices and clusters, Eq. (1) computes a cluster-cluster
relationship, which denotes a fraction of edges between cluster k and [ in G over
the all possible ones between the clusters.

3.3 Optimization

We assume that an ideal MS computed by applying a proper view (clustering)
looks like a graph where only vertices and self-loop edges with weight 1 exist, i.e



a graph whose adjacency matrix is an identity matrix. Our main idea is based
on comparison between the ideal MS and one obtained through applying of a
temporal view, and is to try to minimize the difference between them. This
minimization process maximizes the edge densities within the same cluster and
minimizes edge densities between different clusters.

Given the number of clusters m, we define the ideal MS as the m x m identity
matrix and denote it by I. Employing Frobenius norm of the difference D(B)—TI
as the comparison method, we formulate a m-graph clustering problem as the
following optimization problem:

2
mivimize  f(B) = S, Sty ((D(B) ~ D)
subject to by, € {0,1} and
Zk bir = 1.

This optimization problem is difficult to solve directly because this is a com-
binatorial optimization problem. So we relax the constraints by allowing b;; to
be a real number between 0 and 1, and finally we solve the following non-linear
optimization problem:

2

minimize fB)=%1" >0 ((D(B) - I)kl) )

subject to 0 < by <1 and

Yo bie =1
This relaxation makes the problem a soft clustering problem, which allow a
vertex to belong multiple clusters probabilistically.
Though we don’t discuss any actual optimizing method for the problem

in this paper, the existing non-linear optimization methods, e.g. quasi-Newton
methods as we used in our experiments, can be used to solve the problem above.

4 Experiment

We did two experiments to see the difference of accuracy between our algorithm
and existing algorithms on noisy graphs. First, in order to investigate how the
amount of noise of an input graph impact on the accuracy of our algorithm and
existing ones, we conducted experiments by applying the algorithms on artifi-
cially generated graphs with various configurations of noisiness. We generated
55 types of graphs by changing two parameters py, and poys which control the
amount of edges within the same cluster and ones between different clusters re-
spectively. Next, we did experiments about an application to normal clustering
tasks as more practical cases by extracting graphs from clustering datasets and
applying graph clustering algorithms on them. We generated ten vector datasets
and transformed them into graphs in many ways by changing a parameter a of
the transformation.

4.1 Evaluation

For evaluating results of graph clustering, we adopted the normalized mutual
information (NMI), which is widely used for evaluations of graph clustering



algorithms. NMI is based on mutual information (MI), which is well known
concept in the information theory field and measures the dependency between
two random variables.

Let X and Y be random variables, and p(-) denotes the probability of them.
Then the MI between the random variables is defined as follows:

p(z,y)
MI(X,Y) = p(x,y)log ————.
(6Y) =3 v nlos o
In a context of the graph clustering, p(-) is defined as the fraction of as follows:

S

i |wkﬂCl| \wkﬂCﬂ/N
MI(£2,C) = lo
(2.0=2. 2 =58 g T aT/m
where both 2 = {wy,ws,...,ws} and C = {C1,Cy,...,Cp} are sets of vertices,
{2 is an output from a graph clustering algorithm to be evaluated and C is a
known correct clustering result. MI for graph clustering problems can be inter-
preted as the quantity of the information about the correct cluster of a vertex
we will get after we know that a vertex is included in a cluster in (2.

MI depends on the numbers of clusters in {2 and C, and one-to-one clustering,
where a single vertex forms a cluster, gets the highest score. Thus NMI, the
normalized version of MI, is usually used for graph clustering algorithms to
eliminate the influence of the different numbers of clusters [19]. NMI is defined
as follows:

MI(£2,C)
—3 (Zk Il log Il + 32, %logl%w

By this normalization, NMI score takes a number from 0 (worst accuracy) to 1
(best accuracy).

NMI(£2,C) =

4.2 Environment

All experiments were conducted on a single Linux machine composed of Intel
Core i3 2.93 GHz and 4 GB of memory. We implemented our algorithm in C++
language. As the solver for our optimization problem, we used IPOPT library [20]
of version 3.8.3. This is a software package for large-scale nonlinear optimization
and implements the limited-memory quasi-Newton (L-BFGS) method [13]. We
compared our algorithm with GN algorithm and MCL algorithm. We used an
implementation of GN algorithm included in igraph library [4] and an implemen-
tation of MCL algorithm provided by its author. All source code was compiled
by GCC 4.5.2.

4.3 Exp. 1: Exhaustive Study on Variously Noisy Graphs

Artificial Graph. To generate graphs which contain desired amount of noise,
we developed Algorithm 1, which takes four parameters: the number of vertices n,
the number of clusters k and the probabilities pi, and poys of generating an edge



Algorithm 1 Generate a graph

Input: n, k, pin, Pout
Output: graph G

V « {vi,v2,..., 05}
C < divide_into_clusters(V, k) {Fig. 3(a)}
E+ 0

for i =1 to k do
for j =i to k do
if i = j then
E + E U generate_edge_random_between(pin, C;, C;) {Fig. 3(b)}
else
E <+ E U generate_edge_random_between(pout, Ci, Cj) {Fig. 3(c)}
end if
end for
end for
return (V, E)

80

60

40

20

20 40 60 80 20 40 60 80 20 40 60 80

(a) Divide vertices into & (b) Add edges between (c) Add edges between
clusters the same cluster with pi, different clusters with pout

Fig. 3. Process of generating a graph of size n with k& clusters. The adjacency matrices
of graphs in the process are shown as bitmaps, where its horizontal and vertical axises
correspond to the row and column indices of a matrix respectively and a cell on (3, j)
is filled with white color if and only if there are an edge from vertex ¢ to vertex j.

within a cluster and an edge between clusters respectively. Figure 3 shows an
example of the process of generating a graph.

Figure 4 shows examples of artificial graphs generated by the algorithm. The
graphs are drawn as a bitmap of its adjacency matrix, where its horizontal and
vertical axises correspond to the row and column indices of a matrix respectively
and a cell on (i, 7) is filled with white color if and only if there are an edge from
vertex 4 to vertex j.

Performance of Our Algorithm. Here we show the performance of our al-
gorithm on large graphs. We gave to Algorithm 1 the following 55 parameter
value pairs that satisfy pin, pous € {0,0.1,0.2,...,1} and pin > Pout: (Pin, Pout) =
(0.1,0),(0.2,0),(0.2,0.1),...,(1,0.9). For each of the parameter value pairs, we
randomly generated ten artificial graphs which has 1000 vertices equally divided
into five clusters (i.e. 200 vertices in a cluster). We applied our algorithm on
them, evaluated the results using NMI, and finally we averaged the evaluation
scores every parameter value pair.

Figure 5 shows the results of these experiments, where both Fig. 5(a) and
Fig. 5(b) have 55 colored cells corresponding to the pairs of (pin, pout). Hue from



10

(a) A graph which has five isolate cliques (b) A noisier graph which has weakly con-
nected five clusters

Fig. 4. Two examples graphs generated by Algorithm 1 are shown in two ways: graphi-
cal representation (on the left hand side) and bitmap representation (on the right hand
side). In the bitmap representation, horizontal and vertical axises correspond to the
row and column indices of an adjacency matrix respectively and a cell on (4, j) is filled
with white color if and only if there are an edge from vertex i to vertex j. Figure (a) is
made by only adding all possible edges between vertices within the same cluster, and
(b) is made by adding noise to the graph.

0.8 I . value
-9 Vi -
alue 0.8 . .
W oo
064 0.6- B 200
02
3 04 = 400
So4- . Fos- o
o 800
- bt > 1000
i 10 0.0
00 |
I I I I I | I I I I . 1200
02 04 06 08 1.0 02 04 06 08 1.0
Pin Din
(a) NMI score (b) Computation time

Fig. 5. The results of our algorithm on graphs which has 1000 vertices equally divided
into five clusters. For each parameter pair (pin,Pout), corresponding cell is colored
according to its NMI score and its computation time.

blue (minimum value) to red (maximum value) correspond to their NMI score or
computation time. Figure 5(a) shows that our algorithm achieved high evaluation
score in most of the cases. Furthermore, we can see the evaluation score and the
computation time depend only on the difference of probabilities (pin — Pout)-
From this observations, we can conclude that our algorithm is not affected by
the absolute amount of noises in a given graph, and it can detect the difference
of the edge density within the same cluster and one between different clusters.
This property is very natural and indicates that our algorithm is suite for the
tasks which treat noisy graphs extracted from original data.

Comparison with Previous Work. This section show a comparison among
our algorithm, GN algorithm [10] and MCL algorithm [5]. The procedure of
experiments is the same as the previous experiments. Unlike the previous ones, in
this experiments, every graph has 128 vertices equally divided into four clusters
(i.e. each cluster has 32 vertices).



11

value value
06- = Z:O 06- = 20
QE 04- 0.4 0.4
0.6 0.6
0.2- 0.8 0.8
B B

value

0.0
0.2

value

06- 0.0
0.2

QE 04- 0.4 0.4
0.6 0.6
0.2- 0.8 0.8
Mo B
0.0-
()‘2 0‘4 0‘6 0‘8 W‘O 0‘2 0‘4 0‘6 0‘8 1‘0
Pin Pin
(¢) GNnum (d) MCL (inflation = 4.0)

Fig. 6. Comparison of accuracy among our algorithm, GNmod, GNnum and MCL.
The result of an experiment on graphs which has 128 vertices equally divided into four
clusters. For each parameter pair (pin, Pout) used to generate the graphs, corresponding
cell is colored according to NMI score.

Since GN algorithm is a hierarchical graph clustering algorithm, to obtain an
actual clustering result, we need to choose particular hierarchy. Here we used two
different ways: a way to maximize the modularity measure like [15] (here we call
it GNmod) and a way to choose the hierarchy which produces a result has the
correct number of clusters (we call it GNnum). To execute MCL algorithm, it is
necessary to properly set a parameter value called “inflation”, which adjusts the
granularity of the clustering and actually determines the number of the clusters
output by MCL. We tried four values suggested by the author, and show the
best result (inflation = 4.0) in Fig. 6.

Figure 6(a) shows a result of our algorithm, and Fig. 6(b), 6(c) and 6(d)
show the results of GNmod, GNnum and MCL algorithm respectively. We can
see that existing algorithms fail to cluster in the upper part of the triangle and
they succeed only in the lower part. This indicates that the previous works rely
on the absolute sparseness of edges between different clusters, and that they
can’t detect the small differences of the edge densities within the same cluster
and between different clusters.

4.4 Exp. 2: Application to Vector Clustering

Finally, we compare the accuracies of the algorithms in the so-called “clus-
tering” application task by giving the algorithms graphs which are extracted



12

Vector Dataset

o O@
oo oo
® @9 .

20 2 4 6

Graph Representation

(a) Examples of transforming a vector
dataset into graphs. Three different val-
ues of a parameter a generate graphs
which have various amount of edges

value

Il oo

0.2
0.4
0.6
0.8

B

(b) Approximate characteristic curve of
generated graphs by changes in the trans-
formation parameter a.. A small value of o
generates graphs with a lot of edges (the

top right of the triangle, a large value of
« generates graphs with a few edges (the
bottom left of the triangle

(noise).

Fig. 7. Transformation of a vector dataset.

from datasets consisting of vectors and reflect Euclidean distance relationships
of them. We employed artificially generated datasets and Fisher’s well known
Iris dataset [8] for this experiment.

For the artificial datasets, a d-dimensional vector dataset of size nk for k-
clustering problem was generated as follows:

1. uniformly choose k centers of clusters from [0, 1]%; and

2. for each cluster, sample n vectors from a d-dimensional multivariate normal
distribution with mean vector of its center vector and covariance matrix of
the identity matrix of size d.

We transformed a dataset into a graph by expressing the strength of the re-
lationship between two vectors in a Euclidean space as the probability of linking
the corresponding nodes in a graph, An adjacency matrix A = [a;;] for a given
dataset D = {v;} is constructed as the following:

1 if rand() < exp(—aljv; — vj|])
Q55 = . ) (2)
0 otherwise

where v;, v; is vectors in the dataset, rand() is a call of random number generator
which return a real value in [0,1], a € (0,00) is a parameter which controls the
number of edges to be generated and ||| is the Euclidean metric.



13

method

0.8- —— Ours

06- —— GN (# of clusters)
o —— GN (modularity)
§ 0.4- —— MCL (inflation = 14)

0.2 MCL (inflation = 20)

MCL (inflation = 40)
0.0- | " | . . —— MCL (inflation = 60)
2™ 22 2° 22 2*
alpha
(a) two-dimensional vector datasets
1.0-
method

0.8- —— Ours

06— —— GN (# of clusters)
o —— GN (modularity)
804~ —— MCL (inflation = 14)

0.2 MCL (inflation = 20)

MCL (inflation = 40)
0.0- —— MCL (inflation = 60)
1 1 1 1 1 1 1 1
2® 25 2 23 22 2! 2° 2!
alpha

(b) ten-dimensional vector datasets

Fig. 8. Result of the experiment on artificial vector datasets. For each value of «, an
average NMI scores of ten datasets is plotted.

An example of a generated vector dataset and three example graphs obtained
by the transformation with different o values is shown in Fig. 7(a). According
to the value of «, characteristics of generated graphs approximately vary along
a curve shown in Fig. 7(b).

Figure 8 shows the result of the experiments on artificial datasets. We did
experiments on the two-dimensional vector datasets and ten-dimensional ones
with n = 32 and k = 4. In order to minimize the effect of random generation of
datasets, we generated ten datasets and plotted average NMI scores of them. We
can see that our algorithm got higher score in the left side of the figure, where
the generated graphs are very noisy because of many edges, and the existing
algorithms failed to do clustering on the graphs. This observation indicates the
advantage of our algorithm against the noisy graphs. On the other hand, our
algorithm failed to in the right side of the figure though the existing ones suc-
cessfully did clustering. This is because, according to Fig. 7(b), the difference of
edge densities within the same cluster and between different clusters is too small
for our algorithm to detect.

Figure 9 shows the result of the experiment on the Iris dataset. Although the
Iris dataset consists of 150 samples of three species of Iris flowers, as a clustering
task, it is said to be difficult for clustering algorithms to distinguish two species
of them. So we gave k = 2 (2-clustering problem) to our algorithm and GNnum.



14

,/\/ method

—— Ours

—— GN (# of clusters)

—— GN (modularity)

—— MCL (inflation = 14)
MCL (inflation = 20)
MCL (inflation = 40)

—— MCL (inflation = 60)

Fig. 9. Result of the experiment on the Iris dataset as 2-clustering problem. For each
value of «, an average NMI scores of three experiments on randomly generated graph
using the value is plotted.

The result of the existing algorithms is similar to the previous one, and they
did clustering well only on a small range of values of o which generates cleaner
graphs. By contrast, our algorithm successfully did clustering in a very wide
range of values of o, where the scores of the existing ones are significantly low.

5 Conclusion

This paper proposes an algorithm for graph clustering problems focusing on a
macroscopic structure of a given graph, which is a graph of clusters and describes
the coarse structure of the graph through a view (clustering). Leveraging macro-
scopic structures, the problems are formulated as an optimization problems to
find the best view that minimizes the difference between an ideal MS and an MS
obtained by applying a temporal view. We conducted experiments and the re-
sults of them show that our algorithm outperforms existing algorithms on noisy
graphs.

As future work, it can be considered to extend our algorithm to graph labeling
problems. Graph labeling is assignment of labels to vertices of a given graph, the
labels have different meanings, and thus they should be distinguished unlike
graph clustering problems. We think that an appropriate definition of the ideal
MS enables us to apply our idea, to utilize an MS of a graph, on a wide range of
the problems. In fact, our algorithm can be seen as a graph labeling algorithm
which labels vertices with the names of cluster like “cluster1” and “cluster2”. So
we will investigate further application of our idea.

References

1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-
ability analysis. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security. pp. 217-224. ACM (2002)

2. Angelova, R., Weikum, G.: Graph-based text classification: learn from your neigh-
bors. In: Proceedings of the 29th annual international ACM SIGIR. conference on
Research and development in information retrieval. pp. 485-492. ACM (2006)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

15

Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer networks and ISDN systems 30(1-7), 107-117 (1998)

Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Systems 1695 (2006), http://cneurocvs.rmki.kfki.hu/igraph
van Dongen, S.: Graph clustering by flow simulation. Ph.D. thesis, University of
Utrecht (May 2000)

Dorow, B., Widdows, D., Ling, K., Eckmann, J.P.; Sergi, D., Moses, E.: Using
curvature and markov clustering in graphs for lexical acquisition and word sense
discrimination. Arxiv preprint cond-mat/0403693 (2004)

Dutt, S., Deng, W.: Cluster-aware iterative improvement techniques for partition-
ing large VLSI circuits. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 7(1), 91-121 (2002)

Fisher, R.A.: The use of multiple measurements in taxonomic problems. An-
nals of Human Genetics 7(2), 179-188 (1936), http://dx.doi.org/10.1111/j.1469-
1809.1936.tb02137.x

Gerhardt, G.J.L., Lemke, N., Corso, G.: Network clustering coefficient approach
to DNA sequence analysis. Chaos, Solitons & Fractals 28(4), 1037-1045 (2006)
Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences of the United States of
America 99(12), 7821-7826 (2002)

Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM (JACM) 46(5), 604-632 (1999)

Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The
web as a graph: Measurements, models, and methods. In: Proceedings of the 5th an-
nual international conference on Computing and combinatorics. pp. 1-17. Springer-
Verlag (1999)

Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale opti-
mization. Mathematical Programming 45(1), 503-528 (1989)

Liu, X., Bollen, J., Nelson, M.L., Van de Sompel, H.: Co-authorship networks in the
digital library research community. Information Processing & Management 41(6),
1462-1480 (2005)

Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical review E 69(2), 26113 (2004)

Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the
information sciences. Journal of Information Science 28(6), 441 (2002)

Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N.,
Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., et al.: Towards
a proteome-scale map of the human protein—protein interaction network. Nature
437(7062), 1173-1178 (2005)

Sharon, E., Brandt, A., Basri, R.: Fast multiscale image segmentation. In: Com-
puter Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on.
vol. 1, pp. 70-77. IEEE (2000)

Strehl, A., Strehl, E., Ghosh, J., Mooney, R.: Impact of similarity measures on
Web-page clustering. In: In Workshop on Artificial Intelligence for Web Search
(AAATI 2000 (2000)

Woichter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical Program-
ming 106(1), 25-57 (2006)



