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Abstract

Geotagging is an interesting feature of social media
services which adds metadata of geographical loca-
tions to photos, web sites or messages. From a different
perspective, geotagging can be seen as annotating geo-
graphical locations conversely by images or texts. It is
a challenging task to summarize such annotations and
uncover topical geographical regions characterized by
specific topics locally since such knowledge is useful
for location-based advertising and so on. Determining
topical regions is not trivial since topical region’s
topic and geographical area are dependent on each
other. In this paper, we aim to discover overlapping
topical regions from geotagged text messages (tweets)
collected from Twitter. To this end, we employ Mean
Shift clustering algorithm and an integrated vector
space of a geographic and semantic vector spaces.
Running Mean Shift algorithm on the vector space,
we can evaluate both geographical density and se-
mantic density of tweets simultaneously. Subsequently,
our method determines regions of clusters detected
by Mean Shift algorithm applying the kernel density
estimation on clustered tweets in the geographical
space. Our experiments show clusters get broken into
several sub-clusters that overlap each other when we
increase the weight of semantic density over that of
geographical density.

1. Introduction

With the growth of mobile devices, geotagging is
getting more and more popular among social media

services such as Flickr, del.icio.us and Twitter, which
add metadata of geographical locations to photos,
web sites or messages. A number of studies worked
on semantic annotations of web contents employing
geographical annotations and textual annotations.

From a different perspective, geotagging can be
seen as annotating geographical locations conversely
by images or texts. We can consider geotagged social
media as a socially-made map with rich annotations.
It is a challenging task to summarize such annotations
and uncover geographical regions characterized by
specific topics locally since such knowledge is useful
for location-based advertising and so on.

Determining a topical region is not trivial since its
topic and geographical region are dependent on each
other. Unlike non-semantic spatial clustering which
only consider spatial distribution of data, topical re-
gions can overlap on a geographic space since two
regions at the same location could be distinguished
by their semantics. Thus we have to consider the
distribution of topics and locations simultaneously.
Furthermore, regions could take a variety of forms
and we should not assume only elliptical regions.
The representation of topics is also important. For the
affinity for methods in information retrieval or machine
learning, it would be better to define a topic as a vector
of a vector space model.

In this paper, we aim to discover overlapping
topical regions from geotagged text messages (tweets)
collected from Twitter. To this end, we employ Mean
Shift clustering algorithm [1] and an integrated vector
space of a geographic and semantic vector spaces.
Running Mean Shift algorithm on the vector space, we



can evaluate both geographical density and semantic
density of tweets simultaneously. Subsequently, our
method determines regions of clusters detected by
Mean Shift algorithm applying the kernel density esti-
mation on clustered tweets in the geographical space.
Our experiments show clusters get broken into several
sub-clusters that overlap each other when we increase
the weight of semantic density over geographical den-
sity.

2. Related Work

There are many researches analyzing the relation-
ship between location and semantics of photographs
[2]–[4]. In these works, usually tags of photographs are
analyzed. Thomee and Rae [5] proposed an algorithm
that uncover regions of terms. Those studies mainly
target a single term, not a set of words that represents
a more complex topic.

Other studies [6], [7] models the relationship
among topics, locations, users etc. based on probabilis-
tic models. However, such models needs to be trained,
and usually training data cost very much.

3. Method

We consider a topical region is a set of geo-
graphical points which are closely related in terms of
locations and topics. However, in our method, we aim
to find sets of geotagged tweets which are mutually
related and then to determine geographical areas from
those sets of tweets. We formulate the former as a
problem of clustering tweets which are represented
as ponits in a combined feature space of spatial and
topical spaces.

3.1.Tweet Representation

In our approach, every tweet is represented as a
point (x, y, w1, . . . , wN ) of (2+N)-dimensional vector
space. The first two components x and y are geographi-
cal coordinates, i.e. longitude and latitude respectively,
of tweets. The remaining components are term weights
of a bag-of-words representation of tweets.

There are many term weighting schemes such as
TF-IDF [8] and BM25 [9]. Given a set of docu-
ments D, those scheme weights a term t ∈ d in
a document d ∈ D considering inverse document

frequency (IDF), the number of documents in D that
contains t, in addition to term frequency (TF), a
frequency of t in d. It is considered that terms with
high IDF values don’t specify a topic of a document
since such terms are too common or general. Hence,
IDF values are successfully used in those schemes to
suppress the weights of stop words.

However, we don’t use IDF values for weighting
terms in our method. Instead, we just use normalized
values of TF as term weights. This is because we
think generality and spatial distribution of a term are
dependent on each other. Therefore, to avoid taking
generality of a term into account doubly, we don’t
consider IDF values.

Let fij be the frequency of term ti in a docu-
ment dj , and w

(j)
i be the term weights of the docu-

ment dj . We define the weights as follows:

w
(j)
i =

sfij√∑
i f

2
ij

,

where s is a positive real number. Since geographic
coordinates and term weights have very different scale,
we introduce a scalingfactor s to control the balance
between geographic characteristic and semantic char-
acteristic of a tweet.

3.2.Clustering

Mean Shift [1] is a non-parametric algorithm that
finds local maxima of density of data points based on
kernel density estimation. It is proposed and heavily
used in the field of computer vision, and it has been
used for tasks such as image segmentation and image
smoothing to find regions in which pixels have similar
colors.

It has several good properties for region discovery:

1) it doesn’t assume hyperspherical clusters,
2) it determines the number of clusters automat-

ically, and
3) it has only a single parameter to control.

These properties are also useful for our task, and hence
we employ Mean Shift for discovering regions.

In Mean Shift algorithm, a kernel is used for den-
sity estimation. We employ the flat kernel (uniform ker-
nel) for efficiency, since it only needs nearest neighbors
within a finite distance. The bandwidth parameter r
of the kernel can be manually adjusted to control the
geographical size of clusters independently of s.
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Figure 1. Area within the distance r from the origin
in the cases of Euclidean distance and Chebyshev
distance.

3.3.Distance Function

A distance between tweets is considered in com-
putation of Mean Shift. We use Euclidean distance
of the feature space described above. The distance
between tweets d1 = (x(1), y(1), w

(1)
1 , . . . , w

(1)
N ) and

d2 = (x(2), y(2), w
(2)
1 , . . . , w

(2)
N ) is computed as fol-

lows:

deuclidean(d1, d2) =
√

d2geo(d1, d2) + d2topic(d1, d2),

where

dgeo(d1, d2) =
√
(x(1) − x(2))2 + (y(1) − y(2))2

dtopic(d1, d2) =

√∑
i

(w
(1)
i − w

(2)
i )2.

We also employs another distance function, Cheby-
shev distance:

dchebyshev(d1, d2)

= lim
k→∞

(
|dgeo(d1, d2)|k + |dtopic(d1, d2)|k

)1/k

= max
(
|dgeo(d1, d2)|, |dtopic(d1, d2)|

)
.

Figure 1 shows the difference between areas within a
distance r in the case of Euclidean distance and in the
case of Chebyshev distance. With Chebyshev distance,
we can control the scaling parameter more easily since
deuclidean and dchebyshev are independently restricted with
this distance.

4. Experiment

4.1.Data

We collected tweets using REST API1 provided
by Twitter. Our collection consists of only geotagged
tweets that are located within the circle at N33◦35′25”
E130◦24′6” with radius 20 kilometer, around Fukuoka
city, Japan. There are 20,117 tweets in the collection.

4.2.Terms

Most of the tweets in the collection are written in
Japanese. We used a Japanese morphological analyzer
MeCab [10] to extract terms from Japanese sentences.
Furthermore, we filtered out terms other than adjec-
tives, verbs, adverbs and nouns using part-of-speech
labels given by MeCab.

For the rest of tweets, we simply extracted se-
quences of alphabetic characters as terms. We didn’t
filter obtained terms by part-of-speech unlike Japanese
terms.

4.3.Region Determination

We determined an actual area of clusters obtained
by our method to visualize topical regions. First, we
computed the density of tweets for each cluster by
kernel density estimation. We used Gaussian kernel
with bandwidth 0.0005 for the computation. Then we
consider regions with density larger than 1 belongs to
a cluster.

4.4.Results

Figure 2 shows the obtained topical regions on
maps: Fig. 2(a) shows the result based on only a
geographical distribution of tweets, and Fig. 2(b) and

1. https://dev.twitter.com/rest/public



(a) Result of clustering based on only a geographical distribution. (r =
0.01, s = 0)

(b) Result of geo-semantic clustering with Euclidean distance. (r =
0.01, s = 0.009)

(c) Result of geo-semantic clustering with Chebyshev distance. (r =
0.01, s = 0.009)

Figure 2. Obtained topical regions shown on maps.

Fig. 2(c) show the results of geo-semantic clustering
with Euclidean and Chebyshev distances respectively.

From the maps we can see that the cluster size vary
according to parameter values. Increasing the scaling



Chebyshev Distance

Euclidean Distance

0

5000

10000

15000

0

5000

10000

15000

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100
s

N
um

be
r 

of
 C

lu
st

er
s

r

0.01

0.02

0.03

0.04

0.05

Figure 3. Simulation results

factor s seems to divides clusters into sub-clusters.
Comparing distance functions, we can say the resulting
clusters are very sensitive to the value of s especially
in the case of Euclidean distance.

This observation is shown more clearly in Fig. 3,
which shows how the number of clusters changes when
we vary the scaling parameter s for each distance. In
both cases, we can see that the larger r is the more
slowly the number of clusters increase. Furthermore,
it is shown that there are obvious threshold for s where
the numbers of clusters increases suddenly.

5. Conclusion

We studied on topical region discovery problem.
We formulates the problem as a clustering problem in
a combined feature space of geographic and semantic
spaces. Our method is based on Mean Shift algorithm
and Euclidean or Chebyshev distance functions. We
performed experiments to show the impact of param-
eters on resulting topical regions.
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